ds323x-rs/src/lib.rs

564 lines
20 KiB
Rust

//! This is a platform agnostic Rust driver for the DS3231, DS3232 and DS3234
//! extremely accurate real-time clocks, based on the [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Read and set date and time in 12-hour and 24-hour format. See: [`get_datetime`].
//! - Read and set date and time individual elements. For example, see: [`get_year`].
//! - Enable and disable the real-time clock. See: [`enable`].
//! - Read the busy status. See [`busy`].
//! - Read whether the oscillator is or has been stopped. See [`has_been_stopped`].
//! - Clear the has-been-stopped flag. See [`clear_has_been_stopped_flag`].
//! - Set and read the aging offset. See [`set_aging_offset`].
//! - Select the function of the INT/SQW output pin. See [`use_int_sqw_output_as_interrupt`].
//! - Alarms:
//! - Set alarms 1 and 2 with several matching policies. See [`set_alarm1_day`].
//! - Read whether alarms 1 or 2 have matched. See [`has_alarm1_matched`].
//! - Clear flag indicating that alarms 1 or 2 have matched. See [`clear_alarm1_matched_flag`].
//! - Enable and disable alarms 1 and 2 interrupt generation. See [`enable_alarm1_interrupts`].
//! - Wave generation:
//! - Enable and disable the square-wave generation. See [`enable_square_wave`].
//! - Select the square-wave frequency. See [`set_square_wave_frequency`].
//! - Enable and disable the 32kHz output. See [`enable_32khz_output`].
//! - Enable and disable the 32kHz output when battery powered. See [`enable_32khz_output_on_battery`].
//! - Temperature conversion:
//! - Read the temperature. See [`get_temperature`].
//! - Force a temperature conversion and time compensation. See [`convert_temperature`].
//! - Set the temperature conversion rate. See [`set_temperature_conversion_rate`].
//! - Enable and disable the temperature conversions when battery-powered. See [`enable_temperature_conversions_on_battery`].
//!
//! [`get_datetime`]: struct.Ds323x.html#method.get_datetime
//! [`get_year`]: struct.Ds323x.html#method.get_year
//! [`enable`]: struct.Ds323x.html#method.enable
//! [`get_temperature`]: struct.Ds323x.html#method.get_temperature
//! [`convert_temperature`]: struct.Ds323x.html#method.convert_temperature
//! [`busy`]: struct.Ds323x.html#method.busy
//! [`has_been_stopped`]: struct.Ds323x.html#method.has_been_stopped
//! [`clear_has_been_stopped_flag`]: struct.Ds323x.html#method.clear_has_been_stopped_flag
//! [`set_aging_offset`]: struct.Ds323x.html#method.set_aging_offset
//! [`enable_32khz_output`]: struct.Ds323x.html#method.enable_32khz_output
//! [`use_int_sqw_output_as_interrupt`]: struct.Ds323x.html#method.use_int_sqw_output_as_interrupt
//! [`enable_square_wave`]: struct.Ds323x.html#method.enable_square_wave
//! [`set_square_wave_frequency`]: struct.Ds323x.html#method.set_square_wave_frequency
//! [`set_alarm1_day`]: struct.Ds323x.html#method.set_alarm1_day
//! [`has_alarm1_matched`]: struct.Ds323x.html#method.has_alarm1_matched
//! [`clear_alarm1_matched_flag`]: struct.Ds323x.html#method.clear_alarm1_matched_flag
//! [`enable_alarm1_interrupts`]: struct.Ds323x.html#method.enable_alarm1_interrupts
//! [`enable_32khz_output_on_battery`]: struct.Ds323x.html#method.enable_32khz_output_on_battery
//! [`set_temperature_conversion_rate`]: struct.Ds323x.html#method.set_temperature_conversion_rate
//! [`enable_temperature_conversions_on_battery`]: struct.Ds323x.html#method.enable_temperature_conversions_on_battery
//!
//! ## The devices
//!
//! This driver is compatible with the DS3231 and DS3232 I2C devices and the
//! DS3234 SPI device.
//!
//! ### DS3231
//! The DS3231 is a low-cost, extremely accurate I2C real-time clock (RTC) with
//! an integrated temperature-compensated crystal oscillator (TCXO) and crystal.
//!
//! The device incorporates a battery input, and maintains accurate timekeeping
//! when main power to the device is interrupted. The integration of the
//! crystal resonator enhances the long-term accuracy of the device as well as
//! reduces the piece-part count in a manufacturing line.
//! The DS3231 is available in commercial and industrial temperature ranges,
//! and is offered in a 16-pin, 300-mil SO package.
//!
//! The RTC maintains seconds, minutes, hours, day, date, month, and year
//! information. The date at the end of the month is automatically adjusted for
//! months with fewer than 31 days, including corrections for leap year. The
//! clock operates in either the 24-hour or 12-hour format with an AM/PM
//! indicator. Two programmable time-of-day alarms and a programmable
//! square-wave output are provided. Address and data are transferred serially
//! through an I2C bidirectional bus.
//!
//! A precision temperature-compensated voltage reference and comparator
//! circuit monitors the status of VCC to detect power failures, to provide a
//! reset output, and to automatically switch to the backup supply when
//! necessary. Additionally, the RST pin is monitored as a pushbutton
//! input for generating a μP reset.
//!
//! ### DS3232
//! The DS3232 is a low-cost temperature-compensated crystal oscillator (TCXO)
//! with a very accurate, temperature-compensated, integrated real-time clock
//! (RTC) and 236 bytes of battery-backed SRAM.
//!
//! Additionally, the DS3232 incorporates a battery input and maintains
//! accurate timekeeping when main power to the device is interrupted. The
//! integration of the crystal resonator enhances the long-term accuracy of the
//! device as well as reduces the piece-part count in a manufacturing line.
//! The DS3232 is available in commercial and industrial temperature ranges,
//! and is offered in an industry-standard 20-pin, 300-mil SO package.
//!
//! The RTC maintains seconds, minutes, hours, day, date, month, and year
//! information. The date at the end of the month is automatically adjusted for
//! months with fewer than 31 days, including corrections for leap year. The
//! clock operates in either the 24-hour or 12-hour format with an AM/PM
//! indicator. Two programmable time-of-day alarms and a programmable
//! square-wave output are provided. Address and data are transferred serially
//! through an I2C bidirectional bus.
//!
//! A precision temperature-compensated voltage reference and comparator
//! circuit monitors the status of VCC to detect power failures, to provide a
//! reset output, and to automatically switch to the backup supply when
//! necessary. Additionally, the RST pin is monitored as a pushbutton input for
//! generating a μP reset.
//!
//! ### DS3234
//! The DS3234 is a low-cost, extremely accurate SPI bus real-time clock (RTC)
//! with an integrated temperature-compensated crystal oscillator (TCXO) and
//! crystal.
//!
//! The DS3234 incorporates a precision, temperature-compensated voltage
//! reference and comparator circuit to monitor VCC. When VCC drops below the
//! power-fail voltage (VPF), the device asserts the RST output and also
//! disables read and write access to the part when VCC drops below both VPF
//! and VBAT. The RST pin is monitored as a pushbutton input for generating a
//! μP reset. The device switches to the backup supply input and maintains
//! accurate timekeeping when main power to the device is interrupted.
//! The integration of the crystal resonator enhances the long-term accuracy of
//! the device as well as reduces the piece-part count in a manufacturing line.
//! The DS3234 is available in commercial and industrial temperature ranges,
//! and is offered in an industry-standard 300-mil, 20-pin SO package.
//!
//! The DS3234 also integrates 256 bytes of battery-backed SRAM. In the event
//! of main power loss, the contents of the memory are maintained by the power
//! source connected to the V BAT pin. The RTC maintains seconds, minutes,
//! hours, day, date, month, and year information. The date at the end of the
//! month is automatically adjusted for months with fewer than 31 days,
//! including corrections for leap year. The clock operates in either the
//! 24-hour or 12-hour format with AM/PM indicator. Two programmable
//! time-of-day alarms and a programmable square-wave output are provided.
//! Address and data are transferred serially by an SPI bidirectional bus.
//!
//! Datasheets:
//! - [DS3231](https://datasheets.maximintegrated.com/en/ds/DS3231.pdf)
//! - [DS3232](https://datasheets.maximintegrated.com/en/ds/DS3232.pdf)
//! - [DS3234](https://datasheets.maximintegrated.com/en/ds/DS3234.pdf)
//!
//! ## Usage examples (see also examples folder)
//!
//! To use this driver, import this crate and an `embedded_hal` implementation,
//! then instantiate the appropriate device.
//! In the following 3 examples an instance of the devices DS3231, DS3232 and
//! DS3234 will be created as an example. The rest of examples will use the
//! DS3231 as an example, except when using features specific to another IC,
//! for example, RAM access which is not available in the DS3231 device.
//!
//! Please find additional examples using hardware in this repository: [driver-examples]
//!
//! [driver-examples]: https://github.com/eldruin/driver-examples
//!
//! ### Create a driver instance for the DS3231
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::Ds323x;
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let rtc = Ds323x::new_ds3231(dev);
//! // do something...
//!
//! // get the I2C device back
//! let dev = rtc.destroy_ds3231();
//! # }
//! ```
//!
//! ### Create a driver instance for the DS3232
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::Ds323x;
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let rtc = Ds323x::new_ds3232(dev);
//! // do something...
//!
//! // get the I2C device back
//! let dev = rtc.destroy_ds3232();
//! # }
//! ```
//!
//! ### Create a driver instance for the DS3234
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::Ds323x;
//!
//! # fn main() {
//! let dev = hal::Spidev::open("/dev/spidev0.0").unwrap();
//! let chip_select = hal::Pin::new(24);
//! let rtc = Ds323x::new_ds3234(dev, chip_select);
//! // do something...
//!
//! // get the SPI device and chip select pin back
//! let (dev, chip_select) = rtc.destroy_ds3234();
//! # }
//! ```
//!
//! ### Set the current date and time at once
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::{Ds323x, NaiveDate, Rtcc};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! let datetime = NaiveDate::from_ymd(2020, 5, 1).and_hms(19, 59, 58);
//! rtc.set_datetime(&datetime).unwrap();
//! # }
//! ```
//!
//! ### Get the current date and time at once
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::{Ds323x, Rtcc};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! let dt = rtc.get_datetime().unwrap();
//! println!("{}", dt);
//! // This will print something like: 2020-05-01 19:59:58
//! # }
//! ```
//!
//! ### Get the year
//!
//! Similar methods exist for month, day, weekday, hours, minutes and seconds.
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::{Ds323x, Rtcc};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! let year = rtc.get_year().unwrap();
//! println!("Year: {}", year);
//! # }
//! ```
//!
//! ### Set the year
//!
//! Similar methods exist for month, day, weekday, hours, minutes and seconds.
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::{Ds323x, Rtcc};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! rtc.set_year(2018).unwrap();
//! # }
//! ```
//!
//! ### Enable/disable the device
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::Ds323x;
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! rtc.disable().unwrap(); // stops the clock
//! let running = rtc.running().unwrap();
//! println!("Is running: {}", running); // will print false
//! rtc.enable().unwrap(); // set clock to run
//! println!("Is running: {}", running); // will print true
//! # }
//! ```
//!
//! ### Read the temperature
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::Ds323x;
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! let temperature = rtc.get_temperature().unwrap();
//! # }
//! ```
//!
//! ### Read busy status
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::Ds323x;
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! let busy = rtc.busy().unwrap();
//! # }
//! ```
//!
//! ### Enable the square-wave output with a frequency of 4.096Hz
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::{Ds323x, SqWFreq};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! rtc.set_square_wave_frequency(SqWFreq::_4_096Hz).unwrap();
//! // The same output pin can be used for interrupts or as square-wave output
//! rtc.use_int_sqw_output_as_square_wave().unwrap();
//! rtc.enable_square_wave().unwrap();
//! # }
//! ```
//!
//! ### Enable the 32kHz output except when on battery power
//!
//! Additionally enabling the output depending on the power source is only
//! available for the devices DS3232 and DS3234.
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::{Ds323x, SqWFreq};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3232(dev);
//! rtc.disable_32khz_output_on_battery().unwrap(); // only available for DS3232 and DS3234
//! rtc.enable_32khz_output().unwrap();
//! # }
//! ```
//!
//! ### Set the aging offset
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::Ds323x;
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! rtc.set_aging_offset(-15).unwrap();
//! # }
//! ```
//!
//! ### Set the temperature conversion rate to once every 128 seconds
//!
//! This is only available for the devices DS3232 and DS3234.
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::{Ds323x, TempConvRate};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3232(dev);
//! rtc.set_temperature_conversion_rate(TempConvRate::_128s).unwrap();
//! # }
//! ```
//!
//! ### Set the Alarm1 to each week on a week day at a specific time
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::{Ds323x, Hours, WeekdayAlarm1, Alarm1Matching};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! let alarm1 = WeekdayAlarm1 {
//! weekday: 1,
//! hour: Hours::H24(7),
//! minute: 2,
//! second: 15
//! };
//! rtc.set_alarm1_weekday(alarm1, Alarm1Matching::AllMatch).unwrap();
//! # }
//! ```
//!
//! ### Set the Alarm2 to each day at the same time and enable interrupts on output
//!
//! The INT/SQW output pin will be set to 1 when it the alarm matches.
//!
//! ```no_run
//! extern crate ds323x;
//! extern crate linux_embedded_hal as hal;
//! use ds323x::{Ds323x, Hours, DayAlarm2, Alarm2Matching};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut rtc = Ds323x::new_ds3231(dev);
//! let alarm2 = DayAlarm2 {
//! day: 1, // does not matter given the chosen matching
//! hour: Hours::AM(11),
//! minute: 2
//! };
//! rtc.set_alarm2_day(alarm2, Alarm2Matching::HoursAndMinutesMatch).unwrap();
//! rtc.use_int_sqw_output_as_interrupt().unwrap();
//! rtc.enable_alarm2_interrupts().unwrap();
//! # }
//! ```
#![deny(unsafe_code, missing_docs)]
#![no_std]
extern crate embedded_hal as hal;
use core::marker::PhantomData;
use hal::spi::{Mode, MODE_1, MODE_3};
extern crate rtcc;
pub use self::rtcc::{Datelike, Hours, NaiveDate, NaiveDateTime, NaiveTime, Rtcc, Timelike};
/// SPI mode 1 (CPOL = 0, CPHA = 1)
pub const SPI_MODE_1: Mode = MODE_1;
/// SPI mode 3 (CPOL = 1, CPHA = 1)
pub const SPI_MODE_3: Mode = MODE_3;
/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<CommE, PinE> {
/// I²C/SPI bus error
Comm(CommE),
/// Pin setting error
Pin(PinE),
/// Invalid input data provided
InvalidInputData,
}
/// Square-wave output frequency
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum SqWFreq {
/// 1 Hz (default)
_1Hz,
/// 1.024 Hz
_1_024Hz,
/// 4.096 Hz
_4_096Hz,
/// 8.192 Hz
_8_192Hz,
}
/// Temperature conversion rate
///
/// This is only available on the DS3232 and DS3234 devices.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum TempConvRate {
/// Once every 64 seconds (default)
_64s,
/// Once every 128 seconds
_128s,
/// Once every 256 seconds
_256s,
/// Once every 512 seconds
_512s,
}
struct Register;
impl Register {
const SECONDS: u8 = 0x00;
const MINUTES: u8 = 0x01;
const HOURS: u8 = 0x02;
const DOW: u8 = 0x03;
const DOM: u8 = 0x04;
const MONTH: u8 = 0x05;
const YEAR: u8 = 0x06;
const ALARM1_SECONDS: u8 = 0x07;
const ALARM2_MINUTES: u8 = 0x0B;
const CONTROL: u8 = 0x0E;
const STATUS: u8 = 0x0F;
const AGING_OFFSET: u8 = 0x10;
const TEMP_MSB: u8 = 0x11;
const TEMP_CONV: u8 = 0x13;
}
struct BitFlags;
impl BitFlags {
const H24_H12: u8 = 0b0100_0000;
const AM_PM: u8 = 0b0010_0000;
const CENTURY: u8 = 0b1000_0000;
const EOSC: u8 = 0b1000_0000;
const BBSQW: u8 = 0b0100_0000;
const TEMP_CONV: u8 = 0b0010_0000;
const RS2: u8 = 0b0001_0000;
const RS1: u8 = 0b0000_1000;
const INTCN: u8 = 0b0000_0100;
const ALARM2_INT_EN: u8 = 0b0000_0010;
const ALARM1_INT_EN: u8 = 0b0000_0001;
const OSC_STOP: u8 = 0b1000_0000;
const BB32KHZ: u8 = 0b0100_0000;
const CRATE1: u8 = 0b0010_0000;
const CRATE0: u8 = 0b0001_0000;
const EN32KHZ: u8 = 0b0000_1000;
const BUSY: u8 = 0b0000_0100;
const ALARM2F: u8 = 0b0000_0010;
const ALARM1F: u8 = 0b0000_0001;
const TEMP_CONV_BAT: u8 = 0b0000_0001;
const ALARM_MATCH: u8 = 0b1000_0000;
const WEEKDAY: u8 = 0b0100_0000;
}
const DEVICE_ADDRESS: u8 = 0b110_1000;
const CONTROL_POR_VALUE: u8 = 0b0001_1100;
/// IC markers
pub mod ic {
/// DS3231 IC marker
pub struct DS3231;
/// DS3232 IC marker
pub struct DS3232;
/// DS3234 IC marker
pub struct DS3234;
}
/// DS3231, DS3232 and DS3234 RTC driver
#[derive(Debug, Default)]
pub struct Ds323x<DI, IC> {
iface: DI,
control: u8,
status: u8,
_ic: PhantomData<IC>,
}
mod ds323x;
pub mod interface;
pub use ds323x::{
Alarm1Matching, Alarm2Matching, DayAlarm1, DayAlarm2, WeekdayAlarm1, WeekdayAlarm2,
};
mod ds3231;
mod ds3232;
mod ds3234;
mod private {
use super::{ic, interface};
pub trait Sealed {}
impl<SPI, CS> Sealed for interface::SpiInterface<SPI, CS> {}
impl<I2C> Sealed for interface::I2cInterface<I2C> {}
impl Sealed for ic::DS3231 {}
impl Sealed for ic::DS3232 {}
impl Sealed for ic::DS3234 {}
}