tptimer/env/lib/python2.7/site-packages/astroid/bases.py

451 lines
16 KiB
Python
Raw Normal View History

2018-07-20 05:43:02 +00:00
# Copyright (c) 2009-2011, 2013-2014 LOGILAB S.A. (Paris, FRANCE) <contact@logilab.fr>
# Copyright (c) 2014-2016 Claudiu Popa <pcmanticore@gmail.com>
# Copyright (c) 2014 Google, Inc.
# Copyright (c) 2015-2016 Cara Vinson <ceridwenv@gmail.com>
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
"""This module contains base classes and functions for the nodes and some
inference utils.
"""
import collections
import sys
import six
from astroid import context as contextmod
from astroid import exceptions
from astroid import util
objectmodel = util.lazy_import('interpreter.objectmodel')
BUILTINS = six.moves.builtins.__name__
manager = util.lazy_import('manager')
MANAGER = manager.AstroidManager()
if sys.version_info >= (3, 0):
BUILTINS = 'builtins'
BOOL_SPECIAL_METHOD = '__bool__'
else:
BUILTINS = '__builtin__'
BOOL_SPECIAL_METHOD = '__nonzero__'
PROPERTIES = {BUILTINS + '.property', 'abc.abstractproperty'}
# List of possible property names. We use this list in order
# to see if a method is a property or not. This should be
# pretty reliable and fast, the alternative being to check each
# decorator to see if its a real property-like descriptor, which
# can be too complicated.
# Also, these aren't qualified, because each project can
# define them, we shouldn't expect to know every possible
# property-like decorator!
# TODO(cpopa): just implement descriptors already.
POSSIBLE_PROPERTIES = {"cached_property", "cachedproperty",
"lazyproperty", "lazy_property", "reify",
"lazyattribute", "lazy_attribute",
"LazyProperty", "lazy"}
def _is_property(meth):
if PROPERTIES.intersection(meth.decoratornames()):
return True
stripped = {name.split(".")[-1] for name in meth.decoratornames()
if name is not util.Uninferable}
return any(name in stripped for name in POSSIBLE_PROPERTIES)
class Proxy(object):
"""a simple proxy object"""
_proxied = None # proxied object may be set by class or by instance
def __init__(self, proxied=None):
if proxied is not None:
self._proxied = proxied
def __getattr__(self, name):
if name == '_proxied':
return getattr(self.__class__, '_proxied')
if name in self.__dict__:
return self.__dict__[name]
return getattr(self._proxied, name)
def infer(self, context=None):
yield self
def _infer_stmts(stmts, context, frame=None):
"""Return an iterator on statements inferred by each statement in *stmts*."""
stmt = None
inferred = False
if context is not None:
name = context.lookupname
context = context.clone()
else:
name = None
context = contextmod.InferenceContext()
for stmt in stmts:
if stmt is util.Uninferable:
yield stmt
inferred = True
continue
context.lookupname = stmt._infer_name(frame, name)
try:
for inferred in stmt.infer(context=context):
yield inferred
inferred = True
except exceptions.NameInferenceError:
continue
except exceptions.InferenceError:
yield util.Uninferable
inferred = True
if not inferred:
raise exceptions.InferenceError(
'Inference failed for all members of {stmts!r}.',
stmts=stmts, frame=frame, context=context)
def _infer_method_result_truth(instance, method_name, context):
# Get the method from the instance and try to infer
# its return's truth value.
meth = next(instance.igetattr(method_name, context=context), None)
if meth and hasattr(meth, 'infer_call_result'):
if not meth.callable():
return util.Uninferable
for value in meth.infer_call_result(instance, context=context):
if value is util.Uninferable:
return value
inferred = next(value.infer(context=context))
return inferred.bool_value()
return util.Uninferable
class BaseInstance(Proxy):
"""An instance base class, which provides lookup methods for potential instances."""
special_attributes = None
def display_type(self):
return 'Instance of'
def getattr(self, name, context=None, lookupclass=True):
try:
values = self._proxied.instance_attr(name, context)
except exceptions.AttributeInferenceError:
if self.special_attributes and name in self.special_attributes:
return [self.special_attributes.lookup(name)]
if lookupclass:
# Class attributes not available through the instance
# unless they are explicitly defined.
return self._proxied.getattr(name, context,
class_context=False)
util.reraise(exceptions.AttributeInferenceError(target=self,
attribute=name,
context=context))
# since we've no context information, return matching class members as
# well
if lookupclass:
try:
return values + self._proxied.getattr(name, context,
class_context=False)
except exceptions.AttributeInferenceError:
pass
return values
def igetattr(self, name, context=None):
"""inferred getattr"""
if not context:
context = contextmod.InferenceContext()
try:
# avoid recursively inferring the same attr on the same class
if context.push((self._proxied, name)):
return
# XXX frame should be self._proxied, or not ?
get_attr = self.getattr(name, context, lookupclass=False)
for stmt in _infer_stmts(self._wrap_attr(get_attr, context),
context, frame=self):
yield stmt
except exceptions.AttributeInferenceError:
try:
# fallback to class.igetattr since it has some logic to handle
# descriptors
attrs = self._proxied.igetattr(name, context, class_context=False)
for stmt in self._wrap_attr(attrs, context):
yield stmt
except exceptions.AttributeInferenceError as error:
util.reraise(exceptions.InferenceError(**vars(error)))
def _wrap_attr(self, attrs, context=None):
"""wrap bound methods of attrs in a InstanceMethod proxies"""
for attr in attrs:
if isinstance(attr, UnboundMethod):
if _is_property(attr):
for inferred in attr.infer_call_result(self, context):
yield inferred
else:
yield BoundMethod(attr, self)
elif hasattr(attr, 'name') and attr.name == '<lambda>':
# This is a lambda function defined at class level,
# since its scope is the underlying _proxied class.
# Unfortunately, we can't do an isinstance check here,
# because of the circular dependency between astroid.bases
# and astroid.scoped_nodes.
if attr.statement().scope() == self._proxied:
if attr.args.args and attr.args.args[0].name == 'self':
yield BoundMethod(attr, self)
continue
yield attr
else:
yield attr
def infer_call_result(self, caller, context=None):
"""infer what a class instance is returning when called"""
inferred = False
for node in self._proxied.igetattr('__call__', context):
if node is util.Uninferable or not node.callable():
continue
for res in node.infer_call_result(caller, context):
inferred = True
yield res
if not inferred:
raise exceptions.InferenceError(node=self, caller=caller,
context=context)
class Instance(BaseInstance):
"""A special node representing a class instance."""
# pylint: disable=unnecessary-lambda
special_attributes = util.lazy_descriptor(lambda: objectmodel.InstanceModel())
def __repr__(self):
return '<Instance of %s.%s at 0x%s>' % (self._proxied.root().name,
self._proxied.name,
id(self))
def __str__(self):
return 'Instance of %s.%s' % (self._proxied.root().name,
self._proxied.name)
def callable(self):
try:
self._proxied.getattr('__call__', class_context=False)
return True
except exceptions.AttributeInferenceError:
return False
def pytype(self):
return self._proxied.qname()
def display_type(self):
return 'Instance of'
def bool_value(self):
"""Infer the truth value for an Instance
The truth value of an instance is determined by these conditions:
* if it implements __bool__ on Python 3 or __nonzero__
on Python 2, then its bool value will be determined by
calling this special method and checking its result.
* when this method is not defined, __len__() is called, if it
is defined, and the object is considered true if its result is
nonzero. If a class defines neither __len__() nor __bool__(),
all its instances are considered true.
"""
context = contextmod.InferenceContext()
context.callcontext = contextmod.CallContext(args=[])
context.boundnode = self
try:
result = _infer_method_result_truth(self, BOOL_SPECIAL_METHOD, context)
except (exceptions.InferenceError, exceptions.AttributeInferenceError):
# Fallback to __len__.
try:
result = _infer_method_result_truth(self, '__len__', context)
except (exceptions.AttributeInferenceError, exceptions.InferenceError):
return True
return result
# TODO(cpopa): this is set in inference.py
# The circular dependency hell goes deeper and deeper.
def getitem(self, index, context=None):
pass
class UnboundMethod(Proxy):
"""a special node representing a method not bound to an instance"""
# pylint: disable=unnecessary-lambda
special_attributes = util.lazy_descriptor(lambda: objectmodel.UnboundMethodModel())
def __repr__(self):
frame = self._proxied.parent.frame()
return '<%s %s of %s at 0x%s' % (self.__class__.__name__,
self._proxied.name,
frame.qname(), id(self))
def is_bound(self):
return False
def getattr(self, name, context=None):
if name in self.special_attributes:
return [self.special_attributes.lookup(name)]
return self._proxied.getattr(name, context)
def igetattr(self, name, context=None):
if name in self.special_attributes:
return iter((self.special_attributes.lookup(name), ))
return self._proxied.igetattr(name, context)
def infer_call_result(self, caller, context):
# If we're unbound method __new__ of builtin object, the result is an
# instance of the class given as first argument.
if (self._proxied.name == '__new__' and
self._proxied.parent.frame().qname() == '%s.object' % BUILTINS):
infer = caller.args[0].infer() if caller.args else []
return (Instance(x) if x is not util.Uninferable else x for x in infer)
return self._proxied.infer_call_result(caller, context)
def bool_value(self):
return True
class BoundMethod(UnboundMethod):
"""a special node representing a method bound to an instance"""
# pylint: disable=unnecessary-lambda
special_attributes = util.lazy_descriptor(lambda: objectmodel.BoundMethodModel())
def __init__(self, proxy, bound):
UnboundMethod.__init__(self, proxy)
self.bound = bound
def is_bound(self):
return True
def _infer_type_new_call(self, caller, context):
"""Try to infer what type.__new__(mcs, name, bases, attrs) returns.
In order for such call to be valid, the metaclass needs to be
a subtype of ``type``, the name needs to be a string, the bases
needs to be a tuple of classes and the attributes a dictionary
of strings to values.
"""
from astroid import node_classes
# Verify the metaclass
mcs = next(caller.args[0].infer(context=context))
if mcs.__class__.__name__ != 'ClassDef':
# Not a valid first argument.
return
if not mcs.is_subtype_of("%s.type" % BUILTINS):
# Not a valid metaclass.
return
# Verify the name
name = next(caller.args[1].infer(context=context))
if name.__class__.__name__ != 'Const':
# Not a valid name, needs to be a const.
return
if not isinstance(name.value, str):
# Needs to be a string.
return
# Verify the bases
bases = next(caller.args[2].infer(context=context))
if bases.__class__.__name__ != 'Tuple':
# Needs to be a tuple.
return
inferred_bases = [next(elt.infer(context=context))
for elt in bases.elts]
if any(base.__class__.__name__ != 'ClassDef'
for base in inferred_bases):
# All the bases needs to be Classes
return
# Verify the attributes.
attrs = next(caller.args[3].infer(context=context))
if attrs.__class__.__name__ != 'Dict':
# Needs to be a dictionary.
return
cls_locals = collections.defaultdict(list)
for key, value in attrs.items:
key = next(key.infer(context=context))
value = next(value.infer(context=context))
if key.__class__.__name__ != 'Const':
# Something invalid as an attribute.
return
if not isinstance(key.value, str):
# Not a proper attribute.
return
cls_locals[key.value].append(value)
# Build the class from now.
cls = mcs.__class__(name=name.value, lineno=caller.lineno,
col_offset=caller.col_offset,
parent=caller)
empty = node_classes.Pass()
cls.postinit(bases=bases.elts, body=[empty], decorators=[],
newstyle=True, metaclass=mcs, keywords=[])
cls.locals = cls_locals
return cls
def infer_call_result(self, caller, context=None):
if context is None:
context = contextmod.InferenceContext()
context = context.clone()
context.boundnode = self.bound
if (self.bound.__class__.__name__ == 'ClassDef'
and self.bound.name == 'type'
and self.name == '__new__'
and len(caller.args) == 4
# TODO(cpopa): this check shouldn't be needed.
and self._proxied.parent.frame().qname() == '%s.object' % BUILTINS):
# Check if we have an ``type.__new__(mcs, name, bases, attrs)`` call.
new_cls = self._infer_type_new_call(caller, context)
if new_cls:
return iter((new_cls, ))
return super(BoundMethod, self).infer_call_result(caller, context)
def bool_value(self):
return True
class Generator(BaseInstance):
"""a special node representing a generator.
Proxied class is set once for all in raw_building.
"""
# pylint: disable=unnecessary-lambda
special_attributes = util.lazy_descriptor(lambda: objectmodel.GeneratorModel())
# pylint: disable=super-init-not-called
def __init__(self, parent=None):
self.parent = parent
def callable(self):
return False
def pytype(self):
return '%s.generator' % BUILTINS
def display_type(self):
return 'Generator'
def bool_value(self):
return True
def __repr__(self):
return '<Generator(%s) l.%s at 0x%s>' % (self._proxied.name, self.lineno, id(self))
def __str__(self):
return 'Generator(%s)' % (self._proxied.name)