tptimer/env/lib/python2.7/site-packages/astroid/brain/brain_builtin_inference.py

497 lines
16 KiB
Python

# Copyright (c) 2014-2016 Claudiu Popa <pcmanticore@gmail.com>
# Copyright (c) 2015-2016 Cara Vinson <ceridwenv@gmail.com>
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
"""Astroid hooks for various builtins."""
from functools import partial
import sys
from textwrap import dedent
import six
from astroid import (MANAGER, UseInferenceDefault, AttributeInferenceError,
inference_tip, InferenceError, NameInferenceError)
from astroid import arguments
from astroid.builder import AstroidBuilder
from astroid import helpers
from astroid import nodes
from astroid import objects
from astroid import scoped_nodes
from astroid import util
def _extend_str(class_node, rvalue):
"""function to extend builtin str/unicode class"""
# TODO(cpopa): this approach will make astroid to believe
# that some arguments can be passed by keyword, but
# unfortunately, strings and bytes don't accept keyword arguments.
code = dedent('''
class whatever(object):
def join(self, iterable):
return {rvalue}
def replace(self, old, new, count=None):
return {rvalue}
def format(self, *args, **kwargs):
return {rvalue}
def encode(self, encoding='ascii', errors=None):
return ''
def decode(self, encoding='ascii', errors=None):
return u''
def capitalize(self):
return {rvalue}
def title(self):
return {rvalue}
def lower(self):
return {rvalue}
def upper(self):
return {rvalue}
def swapcase(self):
return {rvalue}
def index(self, sub, start=None, end=None):
return 0
def find(self, sub, start=None, end=None):
return 0
def count(self, sub, start=None, end=None):
return 0
def strip(self, chars=None):
return {rvalue}
def lstrip(self, chars=None):
return {rvalue}
def rstrip(self, chars=None):
return {rvalue}
def rjust(self, width, fillchar=None):
return {rvalue}
def center(self, width, fillchar=None):
return {rvalue}
def ljust(self, width, fillchar=None):
return {rvalue}
''')
code = code.format(rvalue=rvalue)
fake = AstroidBuilder(MANAGER).string_build(code)['whatever']
for method in fake.mymethods():
class_node.locals[method.name] = [method]
method.parent = class_node
def extend_builtins(class_transforms):
from astroid.bases import BUILTINS
builtin_ast = MANAGER.astroid_cache[BUILTINS]
for class_name, transform in class_transforms.items():
transform(builtin_ast[class_name])
if sys.version_info > (3, 0):
extend_builtins({'bytes': partial(_extend_str, rvalue="b''"),
'str': partial(_extend_str, rvalue="''")})
else:
extend_builtins({'str': partial(_extend_str, rvalue="''"),
'unicode': partial(_extend_str, rvalue="u''")})
def register_builtin_transform(transform, builtin_name):
"""Register a new transform function for the given *builtin_name*.
The transform function must accept two parameters, a node and
an optional context.
"""
def _transform_wrapper(node, context=None):
result = transform(node, context=context)
if result:
if not result.parent:
# Let the transformation function determine
# the parent for its result. Otherwise,
# we set it to be the node we transformed from.
result.parent = node
result.lineno = node.lineno
result.col_offset = node.col_offset
return iter([result])
MANAGER.register_transform(nodes.Call,
inference_tip(_transform_wrapper),
lambda n: (isinstance(n.func, nodes.Name) and
n.func.name == builtin_name))
def _generic_inference(node, context, node_type, transform):
args = node.args
if not args:
return node_type()
if len(node.args) > 1:
raise UseInferenceDefault()
arg, = args
transformed = transform(arg)
if not transformed:
try:
inferred = next(arg.infer(context=context))
except (InferenceError, StopIteration):
raise UseInferenceDefault()
if inferred is util.Uninferable:
raise UseInferenceDefault()
transformed = transform(inferred)
if not transformed or transformed is util.Uninferable:
raise UseInferenceDefault()
return transformed
def _generic_transform(arg, klass, iterables, build_elts):
if isinstance(arg, klass):
return arg
elif isinstance(arg, iterables):
if not all(isinstance(elt, nodes.Const)
for elt in arg.elts):
# TODO(cpopa): Don't support heterogenous elements.
# Not yet, though.
raise UseInferenceDefault()
elts = [elt.value for elt in arg.elts]
elif isinstance(arg, nodes.Dict):
if not all(isinstance(elt[0], nodes.Const)
for elt in arg.items):
raise UseInferenceDefault()
elts = [item[0].value for item in arg.items]
elif (isinstance(arg, nodes.Const) and
isinstance(arg.value, (six.string_types, six.binary_type))):
elts = arg.value
else:
return
return klass.from_constants(elts=build_elts(elts))
def _infer_builtin(node, context,
klass=None, iterables=None,
build_elts=None):
transform_func = partial(
_generic_transform,
klass=klass,
iterables=iterables,
build_elts=build_elts)
return _generic_inference(node, context, klass, transform_func)
# pylint: disable=invalid-name
infer_tuple = partial(
_infer_builtin,
klass=nodes.Tuple,
iterables=(nodes.List, nodes.Set, objects.FrozenSet,
objects.DictItems, objects.DictKeys,
objects.DictValues),
build_elts=tuple)
infer_list = partial(
_infer_builtin,
klass=nodes.List,
iterables=(nodes.Tuple, nodes.Set, objects.FrozenSet,
objects.DictItems, objects.DictKeys,
objects.DictValues),
build_elts=list)
infer_set = partial(
_infer_builtin,
klass=nodes.Set,
iterables=(nodes.List, nodes.Tuple, objects.FrozenSet,
objects.DictKeys),
build_elts=set)
infer_frozenset = partial(
_infer_builtin,
klass=objects.FrozenSet,
iterables=(nodes.List, nodes.Tuple, nodes.Set, objects.FrozenSet,
objects.DictKeys),
build_elts=frozenset)
def _get_elts(arg, context):
is_iterable = lambda n: isinstance(n,
(nodes.List, nodes.Tuple, nodes.Set))
try:
inferred = next(arg.infer(context))
except (InferenceError, NameInferenceError):
raise UseInferenceDefault()
if isinstance(inferred, nodes.Dict):
items = inferred.items
elif is_iterable(inferred):
items = []
for elt in inferred.elts:
# If an item is not a pair of two items,
# then fallback to the default inference.
# Also, take in consideration only hashable items,
# tuples and consts. We are choosing Names as well.
if not is_iterable(elt):
raise UseInferenceDefault()
if len(elt.elts) != 2:
raise UseInferenceDefault()
if not isinstance(elt.elts[0],
(nodes.Tuple, nodes.Const, nodes.Name)):
raise UseInferenceDefault()
items.append(tuple(elt.elts))
else:
raise UseInferenceDefault()
return items
def infer_dict(node, context=None):
"""Try to infer a dict call to a Dict node.
The function treats the following cases:
* dict()
* dict(mapping)
* dict(iterable)
* dict(iterable, **kwargs)
* dict(mapping, **kwargs)
* dict(**kwargs)
If a case can't be inferred, we'll fallback to default inference.
"""
call = arguments.CallSite.from_call(node)
if call.has_invalid_arguments() or call.has_invalid_keywords():
raise UseInferenceDefault
args = call.positional_arguments
kwargs = list(call.keyword_arguments.items())
if not args and not kwargs:
# dict()
return nodes.Dict()
elif kwargs and not args:
# dict(a=1, b=2, c=4)
items = [(nodes.Const(key), value) for key, value in kwargs]
elif len(args) == 1 and kwargs:
# dict(some_iterable, b=2, c=4)
elts = _get_elts(args[0], context)
keys = [(nodes.Const(key), value) for key, value in kwargs]
items = elts + keys
elif len(args) == 1:
items = _get_elts(args[0], context)
else:
raise UseInferenceDefault()
value = nodes.Dict(col_offset=node.col_offset,
lineno=node.lineno,
parent=node.parent)
value.postinit(items)
return value
def infer_super(node, context=None):
"""Understand super calls.
There are some restrictions for what can be understood:
* unbounded super (one argument form) is not understood.
* if the super call is not inside a function (classmethod or method),
then the default inference will be used.
* if the super arguments can't be inferred, the default inference
will be used.
"""
if len(node.args) == 1:
# Ignore unbounded super.
raise UseInferenceDefault
scope = node.scope()
if not isinstance(scope, nodes.FunctionDef):
# Ignore non-method uses of super.
raise UseInferenceDefault
if scope.type not in ('classmethod', 'method'):
# Not interested in staticmethods.
raise UseInferenceDefault
cls = scoped_nodes.get_wrapping_class(scope)
if not len(node.args):
mro_pointer = cls
# In we are in a classmethod, the interpreter will fill
# automatically the class as the second argument, not an instance.
if scope.type == 'classmethod':
mro_type = cls
else:
mro_type = cls.instantiate_class()
else:
# TODO(cpopa): support flow control (multiple inference values).
try:
mro_pointer = next(node.args[0].infer(context=context))
except InferenceError:
raise UseInferenceDefault
try:
mro_type = next(node.args[1].infer(context=context))
except InferenceError:
raise UseInferenceDefault
if mro_pointer is util.Uninferable or mro_type is util.Uninferable:
# No way we could understand this.
raise UseInferenceDefault
super_obj = objects.Super(mro_pointer=mro_pointer,
mro_type=mro_type,
self_class=cls,
scope=scope)
super_obj.parent = node
return super_obj
def _infer_getattr_args(node, context):
if len(node.args) not in (2, 3):
# Not a valid getattr call.
raise UseInferenceDefault
try:
# TODO(cpopa): follow all the values of the first argument?
obj = next(node.args[0].infer(context=context))
attr = next(node.args[1].infer(context=context))
except InferenceError:
raise UseInferenceDefault
if obj is util.Uninferable or attr is util.Uninferable:
# If one of the arguments is something we can't infer,
# then also make the result of the getattr call something
# which is unknown.
return util.Uninferable, util.Uninferable
is_string = (isinstance(attr, nodes.Const) and
isinstance(attr.value, six.string_types))
if not is_string:
raise UseInferenceDefault
return obj, attr.value
def infer_getattr(node, context=None):
"""Understand getattr calls
If one of the arguments is an Uninferable object, then the
result will be an Uninferable object. Otherwise, the normal attribute
lookup will be done.
"""
obj, attr = _infer_getattr_args(node, context)
if obj is util.Uninferable or attr is util.Uninferable or not hasattr(obj, 'igetattr'):
return util.Uninferable
try:
return next(obj.igetattr(attr, context=context))
except (StopIteration, InferenceError, AttributeInferenceError):
if len(node.args) == 3:
# Try to infer the default and return it instead.
try:
return next(node.args[2].infer(context=context))
except InferenceError:
raise UseInferenceDefault
raise UseInferenceDefault
def infer_hasattr(node, context=None):
"""Understand hasattr calls
This always guarantees three possible outcomes for calling
hasattr: Const(False) when we are sure that the object
doesn't have the intended attribute, Const(True) when
we know that the object has the attribute and Uninferable
when we are unsure of the outcome of the function call.
"""
try:
obj, attr = _infer_getattr_args(node, context)
if obj is util.Uninferable or attr is util.Uninferable or not hasattr(obj, 'getattr'):
return util.Uninferable
obj.getattr(attr, context=context)
except UseInferenceDefault:
# Can't infer something from this function call.
return util.Uninferable
except AttributeInferenceError:
# Doesn't have it.
return nodes.Const(False)
return nodes.Const(True)
def infer_callable(node, context=None):
"""Understand callable calls
This follows Python's semantics, where an object
is callable if it provides an attribute __call__,
even though that attribute is something which can't be
called.
"""
if len(node.args) != 1:
# Invalid callable call.
raise UseInferenceDefault
argument = node.args[0]
try:
inferred = next(argument.infer(context=context))
except InferenceError:
return util.Uninferable
if inferred is util.Uninferable:
return util.Uninferable
return nodes.Const(inferred.callable())
def infer_bool(node, context=None):
"""Understand bool calls."""
if len(node.args) > 1:
# Invalid bool call.
raise UseInferenceDefault
if not node.args:
return nodes.Const(False)
argument = node.args[0]
try:
inferred = next(argument.infer(context=context))
except InferenceError:
return util.Uninferable
if inferred is util.Uninferable:
return util.Uninferable
bool_value = inferred.bool_value()
if bool_value is util.Uninferable:
return util.Uninferable
return nodes.Const(bool_value)
def infer_type(node, context=None):
"""Understand the one-argument form of *type*."""
if len(node.args) != 1:
raise UseInferenceDefault
return helpers.object_type(node.args[0], context)
def infer_slice(node, context=None):
"""Understand `slice` calls."""
args = node.args
if not 0 < len(args) <= 3:
raise UseInferenceDefault
args = list(map(helpers.safe_infer, args))
for arg in args:
if not arg or arg is util.Uninferable:
raise UseInferenceDefault
if not isinstance(arg, nodes.Const):
raise UseInferenceDefault
if not isinstance(arg.value, (type(None), int)):
raise UseInferenceDefault
if len(args) < 3:
# Make sure we have 3 arguments.
args.extend([None] * (3 - len(args)))
slice_node = nodes.Slice(lineno=node.lineno,
col_offset=node.col_offset,
parent=node.parent)
slice_node.postinit(*args)
return slice_node
# Builtins inference
register_builtin_transform(infer_bool, 'bool')
register_builtin_transform(infer_super, 'super')
register_builtin_transform(infer_callable, 'callable')
register_builtin_transform(infer_getattr, 'getattr')
register_builtin_transform(infer_hasattr, 'hasattr')
register_builtin_transform(infer_tuple, 'tuple')
register_builtin_transform(infer_set, 'set')
register_builtin_transform(infer_list, 'list')
register_builtin_transform(infer_dict, 'dict')
register_builtin_transform(infer_frozenset, 'frozenset')
register_builtin_transform(infer_type, 'type')
register_builtin_transform(infer_slice, 'slice')