tptimer/env/lib/python2.7/site-packages/pylint/checkers/utils.py

861 lines
29 KiB
Python

# Copyright (c) 2006-2007, 2009-2014 LOGILAB S.A. (Paris, FRANCE) <contact@logilab.fr>
# Copyright (c) 2012-2014 Google, Inc.
# Copyright (c) 2013-2016 Claudiu Popa <pcmanticore@gmail.com>
# Copyright (c) 2015 Radu Ciorba <radu@devrandom.ro>
# Copyright (c) 2015 Dmitry Pribysh <dmand@yandex.ru>
# Copyright (c) 2016 Ashley Whetter <ashley@awhetter.co.uk>
# Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
# For details: https://github.com/PyCQA/pylint/blob/master/COPYING
# pylint: disable=W0611
"""some functions that may be useful for various checkers
"""
import collections
import functools
try:
from functools import singledispatch as singledispatch
except ImportError:
# pylint: disable=import-error
from singledispatch import singledispatch as singledispatch
try:
from functools import lru_cache
except ImportError:
from backports.functools_lru_cache import lru_cache
import itertools
import re
import sys
import string
import warnings
import six
from six.moves import map, builtins # pylint: disable=redefined-builtin
import astroid
from astroid import bases as _bases
from astroid import scoped_nodes
BUILTINS_NAME = builtins.__name__
COMP_NODE_TYPES = (astroid.ListComp, astroid.SetComp,
astroid.DictComp, astroid.GeneratorExp)
PY3K = sys.version_info[0] == 3
if not PY3K:
EXCEPTIONS_MODULE = "exceptions"
else:
EXCEPTIONS_MODULE = "builtins"
ABC_METHODS = set(('abc.abstractproperty', 'abc.abstractmethod',
'abc.abstractclassmethod', 'abc.abstractstaticmethod'))
ITER_METHOD = '__iter__'
NEXT_METHOD = 'next' if six.PY2 else '__next__'
GETITEM_METHOD = '__getitem__'
SETITEM_METHOD = '__setitem__'
DELITEM_METHOD = '__delitem__'
CONTAINS_METHOD = '__contains__'
KEYS_METHOD = 'keys'
# Dictionary which maps the number of expected parameters a
# special method can have to a set of special methods.
# The following keys are used to denote the parameters restrictions:
#
# * None: variable number of parameters
# * number: exactly that number of parameters
# * tuple: this are the odd ones. Basically it means that the function
# can work with any number of arguments from that tuple,
# although it's best to implement it in order to accept
# all of them.
_SPECIAL_METHODS_PARAMS = {
None: ('__new__', '__init__', '__call__'),
0: ('__del__', '__repr__', '__str__', '__bytes__', '__hash__', '__bool__',
'__dir__', '__len__', '__length_hint__', '__iter__', '__reversed__',
'__neg__', '__pos__', '__abs__', '__invert__', '__complex__', '__int__',
'__float__', '__neg__', '__pos__', '__abs__', '__complex__', '__int__',
'__float__', '__index__', '__enter__', '__aenter__', '__getnewargs_ex__',
'__getnewargs__', '__getstate__', '__reduce__', '__copy__',
'__unicode__', '__nonzero__', '__await__', '__aiter__', '__anext__',
'__fspath__'),
1: ('__format__', '__lt__', '__le__', '__eq__', '__ne__', '__gt__',
'__ge__', '__getattr__', '__getattribute__', '__delattr__',
'__delete__', '__instancecheck__', '__subclasscheck__',
'__getitem__', '__missing__', '__delitem__', '__contains__',
'__add__', '__sub__', '__mul__', '__truediv__', '__floordiv__',
'__mod__', '__divmod__', '__lshift__', '__rshift__', '__and__',
'__xor__', '__or__', '__radd__', '__rsub__', '__rmul__', '__rtruediv__',
'__rmod__', '__rdivmod__', '__rpow__', '__rlshift__', '__rrshift__',
'__rand__', '__rxor__', '__ror__', '__iadd__', '__isub__', '__imul__',
'__itruediv__', '__ifloordiv__', '__imod__', '__ilshift__',
'__irshift__', '__iand__', '__ixor__', '__ior__', '__ipow__',
'__setstate__', '__reduce_ex__', '__deepcopy__', '__cmp__',
'__matmul__', '__rmatmul__', '__div__'),
2: ('__setattr__', '__get__', '__set__', '__setitem__'),
3: ('__exit__', '__aexit__'),
(0, 1): ('__round__', ),
}
SPECIAL_METHODS_PARAMS = {
name: params
for params, methods in _SPECIAL_METHODS_PARAMS.items()
for name in methods
}
PYMETHODS = set(SPECIAL_METHODS_PARAMS)
class NoSuchArgumentError(Exception):
pass
def is_inside_except(node):
"""Returns true if node is inside the name of an except handler."""
current = node
while current and not isinstance(current.parent, astroid.ExceptHandler):
current = current.parent
return current and current is current.parent.name
def get_all_elements(node):
"""Recursively returns all atoms in nested lists and tuples."""
if isinstance(node, (astroid.Tuple, astroid.List)):
for child in node.elts:
for e in get_all_elements(child):
yield e
else:
yield node
def clobber_in_except(node):
"""Checks if an assignment node in an except handler clobbers an existing
variable.
Returns (True, args for W0623) if assignment clobbers an existing variable,
(False, None) otherwise.
"""
if isinstance(node, astroid.AssignAttr):
return (True, (node.attrname, 'object %r' % (node.expr.as_string(),)))
elif isinstance(node, astroid.AssignName):
name = node.name
if is_builtin(name):
return (True, (name, 'builtins'))
else:
stmts = node.lookup(name)[1]
if (stmts and not isinstance(stmts[0].assign_type(),
(astroid.Assign, astroid.AugAssign,
astroid.ExceptHandler))):
return (True, (name, 'outer scope (line %s)' % stmts[0].fromlineno))
return (False, None)
def is_super(node):
"""return True if the node is referencing the "super" builtin function
"""
if getattr(node, 'name', None) == 'super' and \
node.root().name == BUILTINS_NAME:
return True
return False
def is_error(node):
"""return true if the function does nothing but raising an exception"""
for child_node in node.get_children():
if isinstance(child_node, astroid.Raise):
return True
return False
def is_raising(body):
"""return true if the given statement node raise an exception"""
for node in body:
if isinstance(node, astroid.Raise):
return True
return False
builtins = builtins.__dict__.copy()
SPECIAL_BUILTINS = ('__builtins__',) # '__path__', '__file__')
def is_builtin_object(node):
"""Returns True if the given node is an object from the __builtin__ module."""
return node and node.root().name == BUILTINS_NAME
def is_builtin(name):
"""return true if <name> could be considered as a builtin defined by python
"""
return name in builtins or name in SPECIAL_BUILTINS
def is_defined_before(var_node):
"""return True if the variable node is defined by a parent node (list,
set, dict, or generator comprehension, lambda) or in a previous sibling
node on the same line (statement_defining ; statement_using)
"""
varname = var_node.name
_node = var_node.parent
while _node:
if isinstance(_node, COMP_NODE_TYPES):
for ass_node in _node.nodes_of_class(astroid.AssignName):
if ass_node.name == varname:
return True
elif isinstance(_node, astroid.For):
for ass_node in _node.target.nodes_of_class(astroid.AssignName):
if ass_node.name == varname:
return True
elif isinstance(_node, astroid.With):
for expr, ids in _node.items:
if expr.parent_of(var_node):
break
if (ids and
isinstance(ids, astroid.AssignName) and
ids.name == varname):
return True
elif isinstance(_node, (astroid.Lambda, astroid.FunctionDef)):
if _node.args.is_argument(varname):
# If the name is found inside a default value
# of a function, then let the search continue
# in the parent's tree.
if _node.args.parent_of(var_node):
try:
_node.args.default_value(varname)
_node = _node.parent
continue
except astroid.NoDefault:
pass
return True
if getattr(_node, 'name', None) == varname:
return True
break
elif isinstance(_node, astroid.ExceptHandler):
if isinstance(_node.name, astroid.AssignName):
ass_node = _node.name
if ass_node.name == varname:
return True
_node = _node.parent
# possibly multiple statements on the same line using semi colon separator
stmt = var_node.statement()
_node = stmt.previous_sibling()
lineno = stmt.fromlineno
while _node and _node.fromlineno == lineno:
for ass_node in _node.nodes_of_class(astroid.AssignName):
if ass_node.name == varname:
return True
for imp_node in _node.nodes_of_class((astroid.ImportFrom, astroid.Import)):
if varname in [name[1] or name[0] for name in imp_node.names]:
return True
_node = _node.previous_sibling()
return False
def is_func_default(node):
"""return true if the given Name node is used in function default argument's
value
"""
parent = node.scope()
if isinstance(parent, astroid.FunctionDef):
for default_node in parent.args.defaults:
for default_name_node in default_node.nodes_of_class(astroid.Name):
if default_name_node is node:
return True
return False
def is_func_decorator(node):
"""return true if the name is used in function decorator"""
parent = node.parent
while parent is not None:
if isinstance(parent, astroid.Decorators):
return True
if (parent.is_statement or
isinstance(parent, (astroid.Lambda,
scoped_nodes.ComprehensionScope,
scoped_nodes.ListComp))):
break
parent = parent.parent
return False
def is_ancestor_name(frame, node):
"""return True if `frame` is a astroid.Class node with `node` in the
subtree of its bases attribute
"""
try:
bases = frame.bases
except AttributeError:
return False
for base in bases:
if node in base.nodes_of_class(astroid.Name):
return True
return False
def assign_parent(node):
"""return the higher parent which is not an AssName, Tuple or List node
"""
while node and isinstance(node, (astroid.AssignName,
astroid.Tuple,
astroid.List)):
node = node.parent
return node
def overrides_a_method(class_node, name):
"""return True if <name> is a method overridden from an ancestor"""
for ancestor in class_node.ancestors():
if name in ancestor and isinstance(ancestor[name], astroid.FunctionDef):
return True
return False
def check_messages(*messages):
"""decorator to store messages that are handled by a checker method"""
def store_messages(func):
func.checks_msgs = messages
return func
return store_messages
class IncompleteFormatString(Exception):
"""A format string ended in the middle of a format specifier."""
pass
class UnsupportedFormatCharacter(Exception):
"""A format character in a format string is not one of the supported
format characters."""
def __init__(self, index):
Exception.__init__(self, index)
self.index = index
def parse_format_string(format_string):
"""Parses a format string, returning a tuple of (keys, num_args), where keys
is the set of mapping keys in the format string, and num_args is the number
of arguments required by the format string. Raises
IncompleteFormatString or UnsupportedFormatCharacter if a
parse error occurs."""
keys = set()
num_args = 0
def next_char(i):
i += 1
if i == len(format_string):
raise IncompleteFormatString
return (i, format_string[i])
i = 0
while i < len(format_string):
char = format_string[i]
if char == '%':
i, char = next_char(i)
# Parse the mapping key (optional).
key = None
if char == '(':
depth = 1
i, char = next_char(i)
key_start = i
while depth != 0:
if char == '(':
depth += 1
elif char == ')':
depth -= 1
i, char = next_char(i)
key_end = i - 1
key = format_string[key_start:key_end]
# Parse the conversion flags (optional).
while char in '#0- +':
i, char = next_char(i)
# Parse the minimum field width (optional).
if char == '*':
num_args += 1
i, char = next_char(i)
else:
while char in string.digits:
i, char = next_char(i)
# Parse the precision (optional).
if char == '.':
i, char = next_char(i)
if char == '*':
num_args += 1
i, char = next_char(i)
else:
while char in string.digits:
i, char = next_char(i)
# Parse the length modifier (optional).
if char in 'hlL':
i, char = next_char(i)
# Parse the conversion type (mandatory).
if PY3K:
flags = 'diouxXeEfFgGcrs%a'
else:
flags = 'diouxXeEfFgGcrs%'
if char not in flags:
raise UnsupportedFormatCharacter(i)
if key:
keys.add(key)
elif char != '%':
num_args += 1
i += 1
return keys, num_args
def is_attr_protected(attrname):
"""return True if attribute name is protected (start with _ and some other
details), False otherwise.
"""
return attrname[0] == '_' and attrname != '_' and not (
attrname.startswith('__') and attrname.endswith('__'))
def node_frame_class(node):
"""return klass node for a method node (or a staticmethod or a
classmethod), return null otherwise
"""
klass = node.frame()
while klass is not None and not isinstance(klass, astroid.ClassDef):
if klass.parent is None:
klass = None
else:
klass = klass.parent.frame()
return klass
def is_attr_private(attrname):
"""Check that attribute name is private (at least two leading underscores,
at most one trailing underscore)
"""
regex = re.compile('^_{2,}.*[^_]+_?$')
return regex.match(attrname)
def get_argument_from_call(callfunc_node, position=None, keyword=None):
"""Returns the specified argument from a function call.
:param astroid.Call callfunc_node: Node representing a function call to check.
:param int position: position of the argument.
:param str keyword: the keyword of the argument.
:returns: The node representing the argument, None if the argument is not found.
:rtype: astroid.Name
:raises ValueError: if both position and keyword are None.
:raises NoSuchArgumentError: if no argument at the provided position or with
the provided keyword.
"""
if position is None and keyword is None:
raise ValueError('Must specify at least one of: position or keyword.')
if position is not None:
try:
return callfunc_node.args[position]
except IndexError:
pass
if keyword and callfunc_node.keywords:
for arg in callfunc_node.keywords:
if arg.arg == keyword:
return arg.value
raise NoSuchArgumentError
def inherit_from_std_ex(node):
"""
Return true if the given class node is subclass of
exceptions.Exception.
"""
if node.name in ('Exception', 'BaseException') \
and node.root().name == EXCEPTIONS_MODULE:
return True
return any(inherit_from_std_ex(parent)
for parent in node.ancestors(recurs=True))
def error_of_type(handler, error_type):
"""
Check if the given exception handler catches
the given error_type.
The *handler* parameter is a node, representing an ExceptHandler node.
The *error_type* can be an exception, such as AttributeError,
the name of an exception, or it can be a tuple of errors.
The function will return True if the handler catches any of the
given errors.
"""
def stringify_error(error):
if not isinstance(error, six.string_types):
return error.__name__
return error
if not isinstance(error_type, tuple):
error_type = (error_type, )
expected_errors = {stringify_error(error) for error in error_type}
if not handler.type:
# bare except. While this indeed catches anything, if the desired errors
# aren't specified directly, then we just ignore it.
return False
return handler.catch(expected_errors)
def decorated_with_property(node):
""" Detect if the given function node is decorated with a property. """
if not node.decorators:
return False
for decorator in node.decorators.nodes:
if not isinstance(decorator, astroid.Name):
continue
try:
if _is_property_decorator(decorator):
return True
except astroid.InferenceError:
pass
return False
def _is_property_decorator(decorator):
for infered in decorator.infer():
if isinstance(infered, astroid.ClassDef):
if infered.root().name == BUILTINS_NAME and infered.name == 'property':
return True
for ancestor in infered.ancestors():
if ancestor.name == 'property' and ancestor.root().name == BUILTINS_NAME:
return True
def decorated_with(func, qnames):
"""Determine if the `func` node has a decorator with the qualified name `qname`."""
decorators = func.decorators.nodes if func.decorators else []
for decorator_node in decorators:
try:
if any(i is not None and i.qname() in qnames for i in decorator_node.infer()):
return True
except astroid.InferenceError:
continue
return False
@lru_cache(maxsize=1024)
def unimplemented_abstract_methods(node, is_abstract_cb=None):
"""
Get the unimplemented abstract methods for the given *node*.
A method can be considered abstract if the callback *is_abstract_cb*
returns a ``True`` value. The check defaults to verifying that
a method is decorated with abstract methods.
The function will work only for new-style classes. For old-style
classes, it will simply return an empty dictionary.
For the rest of them, it will return a dictionary of abstract method
names and their inferred objects.
"""
if is_abstract_cb is None:
is_abstract_cb = functools.partial(
decorated_with, qnames=ABC_METHODS)
visited = {}
try:
mro = reversed(node.mro())
except NotImplementedError:
# Old style class, it will not have a mro.
return {}
except astroid.ResolveError:
# Probably inconsistent hierarchy, don'try
# to figure this out here.
return {}
for ancestor in mro:
for obj in ancestor.values():
infered = obj
if isinstance(obj, astroid.AssignName):
infered = safe_infer(obj)
if not infered:
# Might be an abstract function,
# but since we don't have enough information
# in order to take this decision, we're taking
# the *safe* decision instead.
if obj.name in visited:
del visited[obj.name]
continue
if not isinstance(infered, astroid.FunctionDef):
if obj.name in visited:
del visited[obj.name]
if isinstance(infered, astroid.FunctionDef):
# It's critical to use the original name,
# since after inferring, an object can be something
# else than expected, as in the case of the
# following assignment.
#
# class A:
# def keys(self): pass
# __iter__ = keys
abstract = is_abstract_cb(infered)
if abstract:
visited[obj.name] = infered
elif not abstract and obj.name in visited:
del visited[obj.name]
return visited
def _import_node_context(node):
current = node
ignores = (astroid.ExceptHandler, astroid.TryExcept)
while current and not isinstance(current.parent, ignores):
current = current.parent
if current and isinstance(current.parent, ignores):
return current.parent
return None
def is_from_fallback_block(node):
"""Check if the given node is from a fallback import block."""
context = _import_node_context(node)
if not context:
return False
if isinstance(context, astroid.ExceptHandler):
other_body = context.parent.body
handlers = context.parent.handlers
else:
other_body = itertools.chain.from_iterable(
handler.body for handler in context.handlers)
handlers = context.handlers
has_fallback_imports = any(isinstance(import_node, (astroid.ImportFrom, astroid.Import))
for import_node in other_body)
ignores_import_error = _except_handlers_ignores_exception(handlers, ImportError)
return ignores_import_error or has_fallback_imports
def _except_handlers_ignores_exception(handlers, exception):
func = functools.partial(error_of_type,
error_type=(exception, ))
return any(map(func, handlers))
def node_ignores_exception(node, exception):
"""Check if the node is in a TryExcept which handles the given exception."""
current = node
ignores = (astroid.ExceptHandler, astroid.TryExcept)
while current and not isinstance(current.parent, ignores):
current = current.parent
if current and isinstance(current.parent, astroid.TryExcept):
return _except_handlers_ignores_exception(current.parent.handlers, exception)
return False
def class_is_abstract(node):
"""return true if the given class node should be considered as an abstract
class
"""
for method in node.methods():
if method.parent.frame() is node:
if method.is_abstract(pass_is_abstract=False):
return True
return False
def _supports_protocol_method(value, attr):
try:
attributes = value.getattr(attr)
except astroid.NotFoundError:
return False
first = attributes[0]
if isinstance(first, astroid.AssignName):
if isinstance(first.parent.value, astroid.Const):
return False
return True
def is_comprehension(node):
comprehensions = (astroid.ListComp,
astroid.SetComp,
astroid.DictComp,
astroid.GeneratorExp)
return isinstance(node, comprehensions)
def _supports_mapping_protocol(value):
return (
_supports_protocol_method(value, GETITEM_METHOD)
and _supports_protocol_method(value, KEYS_METHOD)
)
def _supports_membership_test_protocol(value):
return _supports_protocol_method(value, CONTAINS_METHOD)
def _supports_iteration_protocol(value):
return (
_supports_protocol_method(value, ITER_METHOD)
or _supports_protocol_method(value, GETITEM_METHOD)
)
def _supports_getitem_protocol(value):
return _supports_protocol_method(value, GETITEM_METHOD)
def _supports_setitem_protocol(value):
return _supports_protocol_method(value, SETITEM_METHOD)
def _supports_delitem_protocol(value):
return _supports_protocol_method(value, DELITEM_METHOD)
def _is_abstract_class_name(name):
lname = name.lower()
is_mixin = lname.endswith('mixin')
is_abstract = lname.startswith('abstract')
is_base = lname.startswith('base') or lname.endswith('base')
return is_mixin or is_abstract or is_base
def is_inside_abstract_class(node):
while node is not None:
if isinstance(node, astroid.ClassDef):
if class_is_abstract(node):
return True
name = getattr(node, 'name', None)
if name is not None and _is_abstract_class_name(name):
return True
node = node.parent
return False
def _supports_protocol(value, protocol_callback):
if isinstance(value, astroid.ClassDef):
if not has_known_bases(value):
return True
# classobj can only be iterable if it has an iterable metaclass
meta = value.metaclass()
if meta is not None:
if protocol_callback(meta):
return True
if isinstance(value, astroid.BaseInstance):
if not has_known_bases(value):
return True
if protocol_callback(value):
return True
# TODO: this is not needed in astroid 2.0, where we can
# check the type using a virtual base class instead.
if (isinstance(value, _bases.Proxy)
and isinstance(value._proxied, astroid.BaseInstance)
and has_known_bases(value._proxied)):
value = value._proxied
return protocol_callback(value)
return False
def is_iterable(value):
return _supports_protocol(value, _supports_iteration_protocol)
def is_mapping(value):
return _supports_protocol(value, _supports_mapping_protocol)
def supports_membership_test(value):
supported = _supports_protocol(value, _supports_membership_test_protocol)
return supported or is_iterable(value)
def supports_getitem(value):
return _supports_protocol(value, _supports_getitem_protocol)
def supports_setitem(value):
return _supports_protocol(value, _supports_setitem_protocol)
def supports_delitem(value):
return _supports_protocol(value, _supports_delitem_protocol)
# TODO(cpopa): deprecate these or leave them as aliases?
@lru_cache(maxsize=1024)
def safe_infer(node, context=None):
"""Return the inferred value for the given node.
Return None if inference failed or if there is some ambiguity (more than
one node has been inferred).
"""
try:
inferit = node.infer(context=context)
value = next(inferit)
except astroid.InferenceError:
return
try:
next(inferit)
return # None if there is ambiguity on the inferred node
except astroid.InferenceError:
return # there is some kind of ambiguity
except StopIteration:
return value
def has_known_bases(klass, context=None):
"""Return true if all base classes of a class could be inferred."""
try:
return klass._all_bases_known
except AttributeError:
pass
for base in klass.bases:
result = safe_infer(base, context=context)
# TODO: check for A->B->A->B pattern in class structure too?
if (not isinstance(result, astroid.ClassDef) or
result is klass or
not has_known_bases(result, context=context)):
klass._all_bases_known = False
return False
klass._all_bases_known = True
return True
def is_none(node):
return (node is None or
(isinstance(node, astroid.Const) and node.value is None) or
(isinstance(node, astroid.Name) and node.name == 'None')
)
def node_type(node):
"""Return the inferred type for `node`
If there is more than one possible type, or if inferred type is YES or None,
return None
"""
# check there is only one possible type for the assign node. Else we
# don't handle it for now
types = set()
try:
for var_type in node.infer():
if var_type == astroid.YES or is_none(var_type):
continue
types.add(var_type)
if len(types) > 1:
return
except astroid.InferenceError:
return
return types.pop() if types else None
def is_registered_in_singledispatch_function(node):
"""Check if the given function node is a singledispatch function."""
singledispatch_qnames = (
'functools.singledispatch',
'singledispatch.singledispatch'
)
if not isinstance(node, astroid.FunctionDef):
return False
decorators = node.decorators.nodes if node.decorators else []
for decorator in decorators:
# func.register are function calls
if not isinstance(decorator, astroid.Call):
continue
func = decorator.func
if not isinstance(func, astroid.Attribute) or func.attrname != 'register':
continue
try:
func_def = next(func.expr.infer())
except astroid.InferenceError:
continue
if isinstance(func_def, astroid.FunctionDef):
return decorated_with(func_def, singledispatch_qnames)
return False